Cách tìm số hạng không chứa x trong khai triển

Sử dụng bí quyết bao quát $left( a+b ight)^n=sumlimits_k,=,0^nC_n^k.a^n,-,k.b^k,,xrightarrow$ Tìm hệ số của số hạng phải kiếm tìm.

Bạn đang xem: Cách tìm số hạng không chứa x trong khai triển


Lời giải của GV capdoihoanhao.vn

Theo knhì triển nhị thức Newton, ta có

$left( xy^2 - dfrac1xy ight)^8 $ $= sumlimits_k, = ,0^8 C_8^k .left( xy^2 ight)^8 - k.left( - dfrac1xy ight)^k $ $= sumlimits_k = 0^8 C_8^k .x^8 - k.y^16 - 2k.left( - 1 ight)^k.left( xy ight)^ - k $ $= sumlimits_k = 0^8 C_8^k .left( - 1 ight)^k.x^8 - 2k.y^16 - 3k.$

Số hạng không chứa $x$ ứng cùng với $8-2k=0Leftrightarrow k=4,,xrightarrow,,$Số hạng yêu cầu search là $C_8^4.left( - ,1 ight)^4.y^4 = 70y^4.$

Đáp án nên lựa chọn là: a


...

Xem thêm: Phát Triển Ngôn Ngữ Đề Tài: Dạy Thơ Tâm Sự Của Cái Mũi ", Bài Thơ: Tâm Sự Của Cái Mũi


*
*
*
*
*
*
*
*

Câu hỏi liên quan


Tìm thông số của $x^12$ trong khai triển $left( 2x - x^2 ight)^10.$


Tìm số hạng đựng $x^7$ trog knhị triển $left( x - dfrac1x ight)^13.$


Tìm số hạng ko đựng $x$ trong khai triển $left( x^2 + dfrac2x ight)^6.$


Tìm số hạng ko đựng $x$ vào khai triển $left( xy^2 - dfrac1xy ight)^8.$


Cho $x$ là số thực dương. Knhì triển nhị thức Newton của biểu thức $left( x^2 + dfrac1x ight)^12$ ta bao gồm thông số của số hạng cất $x^m$ bằng $495.$ Tìm tất cả các quý hiếm của tsi mê số $m.$


Hệ số của số hạng cất (x^10) vào knhì triển nhi thức (left( x + 2 ight)^n) biết n là số ngulặng dương thỏa mãn (3^nC_n^0 - 3^n - 1C_n^1 + 3^n - 2C_n^2 - ... + left( - 1 ight)^nC_n^n = 2048) là:


Hệ số của (x^8) vào knhì triển biểu thức (x^2left( 1 + 2x ight)^10 - x^4left( 3 + x ight)^8) thành nhiều thức bằng


Tìm thông số của $x^6$ trong knhị triển $left( dfrac1x + x^3 ight)^3n, + ,1$ với $x e 0,$ biết $n$ là số ngulặng dương thỏa mãn nhu cầu ĐK $3C_n, + 1^2 + nP_2 = 4A_n^2.$


Cho khai triển $left( sqrt x^3 + dfrac3sqrt<3>x^2 ight)^n$ cùng với $x > 0.$ Biết tổng thông số của cha số hạng trước tiên của khai triển là $631.$ Tìm thông số của số hạng đựng $x^5.$


Giá trị của biểu thức (S = 3^99C_99^0 + 3^98.4C_99^1 + 3^97.4^2C_99^2 + ... + 3.4^98C_99^98 + 4^99C_99^99)() bằng:


Giá trị của biểu thức (S = C_2018^0 + 2C_2018^1 + 2^2C_2018^2 + ... + 2^2017C_2018^2017 + 2^2018C_2018^2018)() bằng:


Giá trị của biểu thức (S = 9^99C_99^0 + 9^98C_99^1 + 9^97C_99^2 + ... + 9C_99^98 + C_99^99)() bằng:


Giá trị của biểu thức (S = 5^nC_n^0 - 5^n - 1.2.C_n^1 + 5^n - 2.2^2C_n^2 + ... + 5left( - 2 ight)^n - 1C_n^n - 1 + left( - 2 ight)^nC_n^n)() bằng:


Cho biểu thức (S = C_n^2 + C_n^3 + C_n^4 + C_n^5... + C_n^n - 2). Khẳng định làm sao sau đây đúng?


Cho biểu thức (S = C_2017^1009 + C_2017^1010 + C_2017^1011 + C_2017^1012... + C_2017^2017). Khẳng định nào sau đây đúng?


Trong những hệ thức sau đây, hệ thức như thế nào sai?


Số nguyên ổn dương (n) thỏa mãn (C_n^0 + 2C_n^1 + 2^2C_n^2 + 2^3C_n^3 + ... + 2^n - 2C_n^n - 2 + 2^n - 1C_n^n - 1 + 2^nC_n^n = 243) là:


Cho $n$ là số nguim dương thỏa mãn nhu cầu ĐK $6.C_n, + ,1^n, - ,1 = A_n^2 + 160.$ Tìm hệ số của $x^7$ trong khai triển $left( 1 - 2x^3 ight)left( 2 + x ight)^n.$


Số nguim dương (n) thỏa mãn (C_n^0.C_n + 1^n + C_n^1.C_n + 1^n - 1 + C_n^2.C_n + 1^n - 2 + ... + C_n^n - 1.C_n + 1^1 + C_n^n.C_n + 1^0 = 1716) là:


Rút gọn tổng sau: (S = C_n^1 + 2C_n^2 + 3C_n^3 + ... + nC_n^n) ta được:


Tổng các hệ số của tất cả các số hạng trong khai triển nhị thức (left( x - 2y ight)^2020) là:


Knhì triển nhị thức (left( x + 2 ight)^n + 5,,left( n in mathbbN ight)) bao gồm toàn bộ (2019) số hạng. Tìm (n).

Xem thêm: Minh Lan Truyện 2018 Full Hd Tập 70 Vietsub, Xem Phim Minh Lan Truyện Tập 70 Vietsub


Cho (left( 1 + 2x ight)^n = a_0 + a_1x^1 + ... + a_nx^n.) Biết (a_0 + dfraca_12 + dfraca_22^2 + ... + dfraca_n2^n = 4096.) Số lớn số 1 trong số số (a_0,a_1,a_2,...,a_n) có mức giá trị bằng


Tìm thông số của (x^5) trong knhì triển thành nhiều thức của (left( 2 - 3x ight)^2n,) biết (n) là số nguyên dương thỏa mãn: (C_2n + 1^0 + C_2n + 1^2 + C_2n + 1^4 + ... + C_2n + 1^2n = 1024.)


Biết tổng các hệ số của knhì triển nhị thức (left( x + dfrac1x^2 ight)^3n) là (64.) Tìm số hạng ko chứa (x.)


*

*

Cơ quan lại nhà quản: công ty chúng tôi Cổ phần công nghệ dạy dỗ Thành Phát


Tel: 0247.300.0559

tin nhắn.com

Trụ sở: Tầng 7 - Tòa bên Intracom - Trần Thái Tông - Q.Cầu Giấy - Hà Nội

*

Giấy phnghiền cung cấp hình thức social trực con đường số 240/GPhường – BTTTT bởi vì Bộ tin tức với Truyền thông.


Chuyên mục: Tổng hợp